Dirichlet Mixtures of Bayesian Linear Gaussian State-Space Models: a Variational Approach
نویسندگان
چکیده
We describe two related models to cluster multidimensional time-series under the assumption of an underlying linear Gaussian dynamical process. In the first model, times-series are assigned to the same cluster when they show global similarity in their dynamics, while in the second model times-series are assigned to the same cluster when they show simultaneous similarity. Both models are based on Dirichlet Mixtures of Bayesian Linear Gaussian State-Space models in order to (semi) automatically determine an appropriate number of components in the mixture, and to additionally bias the components to a parsimonious parameterization. The resulting models are formally intractable and to deal with this we describe a deterministic approximation based on a novel implementation of Variational Bayes.
منابع مشابه
Introducing of Dirichlet process prior in the Nonparametric Bayesian models frame work
Statistical models are utilized to learn about the mechanism that the data are generating from it. Often it is assumed that the random variables y_i,i=1,…,n ,are samples from the probability distribution F which is belong to a parametric distributions class. However, in practice, a parametric model may be inappropriate to describe the data. In this settings, the parametric assumption could be r...
متن کاملUnified Inference for Variational Bayesian Linear Gaussian State-Space Models
Linear Gaussian State-Space Models are widely used and a Bayesian treatment of parameters is therefore of considerable interest. The approximate Variational Bayesian method applied to these models is an attractive approach, used successfully in applications ranging from acoustics to bioinformatics. The most challenging aspect of implementing the method is in performing inference on the hidden s...
متن کاملVariational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures
We study a Bayesian framework for density modeling with mixture of exponential family distributions. Our contributions: •A variational Bayesian solution for finite mixture models • Show that finite mixture models (with a Bayesian setting) can determine the mixture number automatically • Justify this result with connections to Dirichlet Process mixture models •A fast variational Bayesian solutio...
متن کاملPropagation Algorithms for Variational Bayesian Learning
Variational approximations are becoming a widespread tool for Bayesian learning of graphical models. We provide some theoretical results for the variational updates in a very general family of conjugate-exponential graphical models. We show how the belief propagation and the junction tree algorithms can be used in the inference step of variational Bayesian learning. Applying these results to th...
متن کاملVariational Gaussian Process State-Space Models
State-space models have been successfully used for more than fifty years in different areas of science and engineering. We present a procedure for efficient variational Bayesian learning of nonlinear state-space models based on sparse Gaussian processes. The result of learning is a tractable posterior over nonlinear dynamical systems. In comparison to conventional parametric models, we offer th...
متن کامل